Role of protein kinase C in the induction and maintenance of serotonin-dependent enhancement of the glutamate response in isolated siphon motor neurons of Aplysia californica.
نویسندگان
چکیده
Serotonin (5-HT) mediates learning-related facilitation of sensorimotor synapses in Aplysia californica. Under some circumstances 5-HT-dependent facilitation requires the activity of protein kinase C (PKC). One critical site of PKC's contribution to 5-HT-dependent synaptic facilitation is the presynaptic sensory neuron. Here, we provide evidence that postsynaptic PKC also contributes to synaptic facilitation. We investigated the contribution of PKC to enhancement of the glutamate-evoked potential (Glu-EP) in isolated siphon motor neurons in cell culture. A 10 min application of either 5-HT or phorbol ester, which activates PKC, produced persistent (> 50 min) enhancement of the Glu-EP. Chelerythrine and bisindolylmaleimide-1 (Bis), two inhibitors of PKC, both blocked the induction of 5-HT-dependent enhancement. An inhibitor of calpain, a calcium-dependent protease, also blocked 5-HT's effect. Interestingly, whereas chelerythrine blocked maintenance of the enhancement, Bis did not. Because Bis has greater selectivity for conventional and novel isoforms of PKC than for atypical isoforms, this result implicates an atypical isoform in the maintenance of 5-HT's effect. Although induction of enhancement of the Glu-EP requires protein synthesis (Villareal et al., 2007), we found that maintenance of the enhancement does not. Maintenance of 5-HT-dependent enhancement appears to be mediated by a PKM-type fragment generated by calpain-dependent proteolysis of atypical PKC. Together, our results suggest that 5-HT treatment triggers two phases of PKC activity within the motor neuron, an early phase that may involve conventional, novel or atypical isoforms of PKC, and a later phase that selectively involves an atypical isoform.
منابع مشابه
The potential role of postsynaptic phospholipase C activity in synaptic facilitation and behavioral sensitization in Aplysia.
Previous findings indicate that synaptic facilitation, a cellular mechanism underlying sensitization of the siphon withdrawal response (SWR) in Aplysia, depends on a cascade of postsynaptic events, including activation of inositol triphosphate (IP3) receptors and release of Ca2+ from postsynaptic intracellular stores. These findings suggest that phospholipase C (PLC), the enzyme that catalyzes ...
متن کاملAge-related deficits in synaptic plasticity rescued by activating PKA or PKC in sensory neurons of Aplysia californica
Brain aging is associated with declines in synaptic function that contribute to memory loss, including reduced postsynaptic response to neurotransmitters and decreased neuronal excitability. To understand how aging affects memory in a simple neural circuit, we studied neuronal proxies of memory for sensitization in mature vs. advanced age Aplysia californica (Aplysia). L-Glutamate- (L-Glu-) evo...
متن کاملThe Role of Rapid, Local, Postsynaptic Protein Synthesis in Learning-Related Synaptic Facilitation in Aplysia
The discovery that dendrites of neurons in the mammalian brain possess the capacity for protein synthesis stimulated interest in the potential role of local, postsynaptic protein synthesis in learning-related synaptic plasticity. But it remains unclear how local, postsynaptic protein synthesis actually mediates learning and memory in mammals. Accordingly, we examined whether learning in an inve...
متن کاملSensitizing stimuli cause translocation of protein kinase C in Aplysia sensory neurons.
The defensive tail-withdrawal reflex of Aplysia californica, mediated by identified sensory neurons in pleural ganglia that form synapses on motor cells in pedal ganglia, can be sensitized by stimulating the animal with electric shock. The neurophysiological basis of this simple form of learning is thought to be the increased release of transmitter by the sensory neurons. Earlier work has focus...
متن کاملSerotonin facilitates AMPA-type responses in isolated siphon motor neurons of Aplysia in culture.
1. Serotonin (5-HT) facilitates the connections between sensory and motor neurons in Aplysia during behavioural sensitization. The effect of 5-HT on sensorimotor synapses is believed to be primarily presynaptic. Here we tested whether 5-HT can have an exclusively postsynaptic facilitatory effect. 2. Siphon motor neurons were individually dissociated from the abdominal ganglion of Aplysia and pl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 16 شماره
صفحات -
تاریخ انتشار 2009